A Degree Sequence Variant of Graph Ramsey Numbers
نویسندگان
چکیده
A (finite) sequence of nonnegative integers is graphic if it is the degree sequence of some simple graph G. Given graphs G1 and G2, we consider the smallest integer n such that for every n-term graphic sequence π, there is some graph G with degree sequence π with G1 ⊆ G or with G2 ⊆ G. When the phrase “some graph” in the prior sentence is replaced with “all graphs” the smallest such integer n is the classical Ramsey number r(G1, G2) and thus we call this parameter for degree sequences the potential-Ramsey number and denote it rpot(G1, G2). In this paper, we give exact values for rpot(Kn,Kt), rpot(Cn,Kt), and rpot(Pn,Kt) and consider situations where rpot(G1, G2) = r(G1, G2).
منابع مشابه
Ramsey-type Numbers for Degree Sequences
A (finite) sequence of nonnegative integers is graphic if it is the degree sequence of some simple graph G. Given graphs G1 and G2, we consider the smallest integer n such that for every n-term graphic sequence π, there is some graph G with degree sequence π with G1 ⊆ G or with G2 ⊆ G. When the phrase “some graph” in the prior sentence is replaced with “all graphs” the smallest such integer n i...
متن کاملOn the Size-Ramsey Number of Hypergraphs
The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...
متن کاملChvátal-type results for degree sequence Ramsey numbers
A sequence of nonnegative integers π = (d1, d2, ..., dn) is graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said to realize or be a realization of π. Given a graph H, a graphic sequence π is potentially H-graphic if there is some realization of π that contains H as a subgraph. In this paper, we consider a degree sequence analogue to classical graph...
متن کاملA Note on Planar Ramsey Numbers for a Triangle Versus Wheels
We assume that the reader is familiar with standard graph-theoretic terminology and refer the readers to Bondy and Murty (2008) for any concept and notation that is not defined here. In this paper, we consider simple, undirected graphs. Given two graphsG andH , the Ramsey numberR(G,H) is the smallest integer n such that every graph F on n vertices contains a copy of G, or its complement F conta...
متن کاملAll Ramsey (2K2,C4)−Minimal Graphs
Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 30 شماره
صفحات -
تاریخ انتشار 2014